Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood Adv ; 7(12): 2718-2730, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-36469024

RESUMEN

Therapy with CD19-directed chimeric antigen receptor (CAR) T cells has transformed the treatment of advanced B-cell malignancies. However, loss of or low antigen expression can enable tumor escape and limit the duration of responses achieved with CAR T-cell therapy. Engineering bispecific CAR T cells that target 2 tumor antigens could overcome antigen-negative escape. We found that CD79a and b, which are heterodimeric components of the B-cell receptor, were expressed on 84.3% of lymphoma cases using immunohistochemistry, and 87.3% of CD79ab-positive tumors also coexpressed CD19. We generated 3 bispecific permutations: tandem, bicistronic, and pooled products of CD79a-CD19 or CD79b-CD19 CAR T cells and showed that bispecific CAR T cells prevented the outgrowth of antigen-negative cells in a CD19-loss lymphoma xenograft model. However, tandem and bicistronic CAR T cells were less effective than monospecific CD19 or CD79a CAR T cells for the treatment of tumors that only expressed CD19 or CD79, respectively. When compared with monospecific CAR T cells, T cells expressing a tandem CAR exhibited reduced binding of each target antigen, and T cells expressing a bicistronic CAR vector exhibited reduced phosphorylation of downstream CAR signaling molecules. Our study showed that despite added specificity, tandem and bicistronic CAR T cells exhibit different defects that impair recognition of tumor cells expressing a single antigen. Our data provide support for targeting multiple B-cell antigens to improve efficacy and identify areas for improvement in bispecific receptor designs.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Linfocitos B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Immunohorizons ; 6(8): 581-599, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970557

RESUMEN

Malaria-induced bacteremia has been shown to result from intestinal mast cell (MC) activation. The appearance of MCs in the ileum and increased intestinal permeability to enteric bacteria are preceded by an early Th2-biased host immune response to infection, characterized by the appearance of IL-4, IL-10, mast cell protease (Mcpt)1 and Mcpt4, and increased circulating basophils and eosinophils. Given the functional similarities of basophils and MCs in the context of allergic inflammation and the capacity of basophils to produce large amounts of IL-4, we sought to define the role of basophils in increased intestinal permeability, in MC influx, and in the development of bacteremia in the context of malaria. Upon infection with nonlethal Plasmodium yoelii yoelii 17XNL, Basoph8 × ROSA-DTα mice or baso (-) mice that lack basophils exhibited increased intestinal permeability and increased ileal MC numbers, without any increase in bacterial 16S ribosomal DNA copy numbers in the blood, relative to baso (+) mice. Analysis of cytokines, chemokines, and MC-associated factors in the ileum revealed significantly increased TNF-α and IL-13 at day 6 postinfection in baso (-) mice compared with baso (+) mice. Moreover, network analysis of significantly correlated host immune factors revealed profound differences between baso (-) and baso (+) mice following infection in both systemic and ileal responses to parasites and translocated bacteria. Finally, basophil depletion was associated with significantly increased gametocytemia and parasite transmission to Anopheles mosquitoes, suggesting that basophils play a previously undescribed role in controlling gametocytemia and, in turn, mammalian host-to-mosquito parasite transmission.


Asunto(s)
Bacteriemia , Basófilos , Culicidae , Malaria , Animales , Bacteriemia/etiología , Interleucina-4 , Malaria/complicaciones , Malaria/transmisión , Ratones , Permeabilidad
3.
Clin Cancer Res ; 28(20): 4551-4564, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35920742

RESUMEN

PURPOSE: The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN: We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS: Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS: LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Muerte Celular , Inhibidores Enzimáticos/uso terapéutico , Etopósido/uso terapéutico , Histona Demetilasas/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/patología , Lisina/uso terapéutico , Ratones , Platino (Metal)/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/patología , Microambiente Tumoral
4.
Front Physiol ; 13: 911097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747317

RESUMEN

Approximately 3.4 billion people are at risk of malaria, a disease caused by infection with Plasmodium spp. parasites, which are transmitted by Anopheles mosquitoes. Individuals with severe falciparum malaria often exhibit changes in circulating blood levels of biogenic amines, including reduced serotonin or 5-hydroxytryptamine (5-HT), and these changes are associated with disease pathology. In insects, 5-HT functions as an important neurotransmitter for many behaviors and biological functions. In Anopheles stephensi, we show that 5-HT is localized to innervation in the head, thorax, and midgut, suggesting a gut-to-brain signaling axis that could support the effects of ingested 5-HT on mosquito biology and behavioral responses. Given the changes in blood levels of 5-HT associated with severe malaria and the key roles that 5-HT plays in insect neurophysiology, we investigated the impact of ingesting blood with healthy levels of 5-HT (1.5 µM) or malaria-associated levels of 5-HT (0.15 µM) on various aspects of A. stephensi biology. In these studies, we provisioned 5-HT and monitored fecundity, lifespan, flight behavior, and blood feeding of A. stephensi. We also assessed the impact of 5-HT ingestion on infection of A. stephensi with the mouse malaria parasite Plasmodium yoelii yoelii 17XNL and the human malaria parasite Plasmodium falciparum. Our data show that ingestion of 5-HT associated with severe malaria increased mosquito flight velocity and investigation of visual objects in response to host odor (CO2). 5-HT ingestion in blood at levels associated with severe malaria also increased the tendency to take a second blood meal 4 days later in uninfected A. stephensi. In mosquitoes infected with P. y. yoelii 17XNL, feeding tendency was decreased when midgut oocysts were present but increased when sporozoites were present. In addition to these effects, treatment of A. stephensi with 5-HT associated with severe malaria increased infection success with P. y. yoelii 17XNL compared to control, while treatment with healthy levels of 5-HT decreased infection success with P. falciparum. These changes in mosquito behavior and infection success could be used as a basis to manipulate 5-HT signaling in vector mosquitoes for improved control of malaria parasite transmission.

5.
BMC Genomics ; 22(1): 378, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030629

RESUMEN

BACKGROUND: Speed congenics is an important tool for creating congenic mice to investigate gene functions, but current SNP genotyping methods for speed congenics are expensive. These methods usually rely on chip or array technologies, and a different assay must be developed for each backcross strain combination. "Next generation" high throughput DNA sequencing technologies have the potential to decrease cost and increase flexibility and power of speed congenics, but thus far have not been utilized for this purpose. RESULTS: We took advantage of the power of high throughput sequencing technologies to develop a cost-effective, high-density SNP genotyping assay that can be used across many combinations of backcross strains. The assay surveys 1640 genome-wide SNPs known to be polymorphic across > 100 mouse strains, with an expected average of 549 ± 136 SD diagnostic SNPs between each pair of strains. We demonstrated that the assay has a high density of diagnostic SNPs for backcrossing the BALB/c strain into the C57BL/6J strain (807-819 SNPs), and a sufficient density of diagnostic SNPs for backcrossing the closely related substrains C57BL/6N and C57BL/6J (123-139 SNPs). Furthermore, the assay can easily be modified to include additional diagnostic SNPs for backcrossing other closely related substrains. We also developed a bioinformatic pipeline for SNP genotyping and calculating the percentage of alleles that match the backcross recipient strain for each sample; this information can be used to guide the selection of individuals for the next backcross, and to assess whether individuals have become congenic. We demonstrated the effectiveness of the assay and bioinformatic pipeline with a backcross experiment of BALB/c-IL4/IL13 into C57BL/6J; after six generations of backcrosses, offspring were up to 99.8% congenic. CONCLUSIONS: The SNP genotyping assay and bioinformatic pipeline developed here present a valuable tool for increasing the power and decreasing the cost of many studies that depend on speed congenics. The assay is highly flexible and can be used for combinations of strains that are commonly used for speed congenics. The assay could also be used for other techniques including QTL mapping, standard F2 crosses, ancestry analysis, and forensics.


Asunto(s)
Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Animales , Costos y Análisis de Costo , Genotipo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
6.
Cancer Cell ; 39(2): 193-208.e10, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33357452

RESUMEN

Adoptive therapy using chimeric antigen receptor-modified T cells (CAR-T cells) is effective in hematologic but not epithelial malignancies, which cause the greatest mortality. In breast and lung cancer patients, CAR-T cells targeting the tumor-associated antigen receptor tyrosine kinase-like orphan receptor 1 (ROR1) infiltrate tumors poorly and become dysfunctional. To test strategies for enhancing efficacy, we adapted the KrasLSL-G12D/+;p53f/f autochthonous model of lung adenocarcinoma to express the CAR target ROR1. Murine ROR1 CAR-T cells transferred after lymphodepletion with cyclophosphamide (Cy) transiently control tumor growth but infiltrate tumors poorly and lose function, similar to what is seen in patients. Adding oxaliplatin (Ox) to the lymphodepletion regimen activates tumor macrophages to express T-cell-recruiting chemokines, resulting in improved CAR-T cell infiltration, remodeling of the tumor microenvironment, and increased tumor sensitivity to anti-PD-L1. Combination therapy with Ox/Cy and anti-PD-L1 synergistically improves CAR-T cell-mediated tumor control and survival, providing a strategy to improve CAR-T cell efficacy in the clinic.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Neoplasias Pulmonares/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/inmunología , Microambiente Tumoral/inmunología
7.
Front Cell Infect Microbiol ; 10: 600112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324580

RESUMEN

Antifolate resistance is significant in Kenya and presumed to result from extensive use and cross-resistance between antifolate antimalarials and antibiotics, including cotrimoxazole/Bactrim used for HIV-1 chemotherapy. However, little is known about antifolate-resistant malaria in the context of newly diagnosed HIV-1 co-infection prior to administration of HIV-1 chemotherapy. Blood samples from a cross-sectional study of asymptomatic adult Kenyans enrolled during voluntary HIV testing were analyzed by PCR for Plasmodium spp. More than 95% of volunteers with identifiable parasite species (132 HIV-1 co-infected) were infected with Plasmodium falciparum alone or P. falciparum with Plasmodium ovale and/or Plasmodium malariae. Deep sequencing was used to screen for mutations in P. falciparum dihydrofolate reductase (dhfr) (N51I, C59R, S108N, I164L) and dihydropteroate synthase (dhps) (S436H, A437G, K540E, A581G) from 1133 volunteers. Individual mutations in DHPS but not DHFR correlated with HIV-1 status. DHFR haplotype diversity was significantly different among volunteers by gender and HIV-1 status. DHPS haplotype diversity by HIV-1 status was significantly different between volunteers paired by age and gender, indicating that patterns of resistance were independent of these variables. Molecular simulations for a novel DHPS mutation (I504T) suggested that the mutated protein has increased affinity for the endogenous ligand DHPPP and decreased affinity for drug binding. A sub-group of monoclonal infections revealed that age and parasitemia were not correlated and enabled identification of a rare septuple-mutant haplotype (IRNL-HGEA). In our study, adult Kenyans newly diagnosed with HIV-1 infection were predominantly infected with moderately resistant P. falciparum, with patterns of infecting parasite genotypes significantly associated with HIV-1 status. Together with the discovery of DHPS I504T, these data indicate that antifolate resistance continues to evolve in Kenya. Further, they highlight the need to understand the effects of associated mutations on both fitness and resistance of P. falciparum in the context of HIV-1 co-infection to better inform treatment for asymptomatic malaria.


Asunto(s)
Coinfección , VIH-1 , Malaria Falciparum , Adulto , Estudios Transversales , Combinación de Medicamentos , Resistencia a Medicamentos/genética , VIH-1/genética , Humanos , Kenia/epidemiología , Mutación , Plasmodium falciparum/genética , Pirimetamina/farmacología , Sulfadoxina , Tetrahidrofolato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...